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ABSTRACT 

The study begins with sane formal apparatus of the theory (non-linear) . The 
analogue of Clebsch's transformation of the hydrodynsmical equations allows a usefLL 
representation for the magnetic field; this representation leads in turn to sune 

canonical equations for the motion of magnetic field of great theoretical interest. 

A theorem of decanposition of the magnetic field similar to the Cauchy-Stokes 
decomposition theorem in hydrodynamics is also here presented. 
report deals with hydromagnetic wave propagation in (i) a constant and uniform 
magnetic field; (ii) in a constant dipole. 

The rest of the 

The effect of compressibility is especially investigated in the case of a 

constant and uniform magnetic field. 

The disturbance is specified interms of vorticity and current density. 
appears that the cmpressibility of a medium acts as a wave filter discriminating 
between cmponents of vorticity (and current density) and passing only those 
directed along the (undisturbed) wnetic field. 

It 

The case of a dipole magnetic field presents a singular importance, in vlew 
of its applications to geophysical phenmena, and is discussed in some great detail. 
Dungey in his remarkable report o f  1954 (The Pennsylvania State University, 
Ionisphere Research Iaboratory, Scientific Report No. 69) has already discussed 
the electrodynamic behavior of the Outer Atmosphere in the presence of a constant- 
dipole magnetic field. 
different point of view; the magnetohydrodynamic behavior of the fluid is discussed 
in terms of vorticity and current density. The equations obtained are canplicated, 
however, and solutions are discussed o n l y  at large distances from the center of the 

In this study, however, the problem is appraclzed fran e 

dipole. 

The study of 
chapter where the 

hydranagnetic wave propagation in a dipole is preceded by a 
gemetry of lines of force is presented. 

ii 



The material in this report summarizes the results of researches undertaken 
by the writer on the subject of EIydraaagnetic Wave Propagation in an electrically 
conducting fluid of infinite extent embedded in a constant dipole magnetic field. 
This work has been supported by a contract with the National Aeronautics and Space 
Administration (Contract No. ~ m - 1 8 ) .  
the subject and the ccmplexity of the problem have permitted only an exploratory 
effort. The phenmena, as indicated by mathematical analysis, are no doubt very 
cmplicated and considerable more effort is required in this direction. It is hoped, 
however, that this pioneer effort may serve as an introduction to subsequent detailed 
investigations. 

The little time allowed to us to investigate 

The author takes this occasion to express his gratitude to Dr. Robert Jastrow 
for his interest in and support of' this work. 
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INTROIXTCTION 

The theory of magnetohydrodynamic waves is the creation of Alfvgn and Wale'n. 
In his celebrated paper of 19&(1) &fv& has shown that waves can travel along 
magnetic lines of force in a conducting material; see also Reference 2. Wal'en, (24) 

in 1944, has discussed in sme detail these waves and has given the magnetohydro- 
dynamic equations starting with the principle of conservation of energy. 

To these pioneer efforts other savants (Spitzer"'), Cowling (7'8), Grad (15 1 , 
Lighthi1l(l7), and MacDonald (18)) added their researches, resulting in the elegant 
theory of magnetohydrodynamic waves as presented, for instance, in Lighthill's 
great memoir of 1961. 
c mpres sible fluid . 

My earlier work consists mainly in analysis for the case of a 
(3,5) 

All this work presupposes a uniform magnetic field. Non-uniformity of the 
magnetic field effects the theory both because the wave velocity varies in magnitude 
and direction and because new forces are introduced. 
field is of particular importwce, in view of its applications to geophysical 
phenmena . This revivifies StSrmer ' s work (22) and other aurora theories. 
great importance indeed to know up to what an extent Stbaer's theory may be improved 
by using the hydranapetic approach, that is to say, assuming a fluid mechanics 
continuum approximation. 

The case of a dipole magnetic 

It is of 

Hydramagnetic wave propagation ins dipolemagnetic field has already been 
discussed in sme detail by Dunge~!~) Our approach is, however, more general and 
sets up the magneto*hyciroaynemic equations in the Outer Atmosphere at large distances 
frm the earth. 

In a subject which is developing so rapidly, this problem cannot be discussed 
with any approach to finality, but this did not seem to be a reason against writing 
these pages. 

In Chapter I we rapidly review the basic equations of magnetohydrodynamics. 
The analogue of Clebsch's transformation of the hydrodynamical equations allows a 
useful representation for the magnetic field; this representation leads in turn 
to sane canonical equations for the motion of magnetic field of great theoretical 
interest. 
change of the magnetic field similar to the Cauchy-Stokes decmposition theorem In 

The Chapter is concluded with a theorem of decmposition for the rate of 

1 



hydrodynamics. 
presence of a unifommegnetic f ie ld .  
the geanetry of dipole msgnetic l ines  of force. 
dynamic waves i n  a constant dipole magnetic f ie ld .  

Chapter I1 presents the theory of magnetohydrodynamic waves i n  the 

I n  Chapter I11 we discuss i n  sane de ta i l  
Chapter I V  deals w i t h  magnetohydro- 

2 
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CHAPTER I 

BASIC CONCEPTS - THE EFFECT OF A MAGNETIC FIELD 

1. The Basic Equations of Magnetohydrodynam i c s  

When the displacement currents may be neglected, Maxwell's equations are  

i3H - 
"e at curl E = - 

div H = 0 - (3)  

where the electranagnetic variables are measured i n  electromagnetic units, E and H 
are  the intensi t ies  of the electr ic  and magnetic fields, J is  the current density, 
and pe i s  the magnetic permeability. 
need an equation for  the current density. 

- 
- 

To canplete the equations for  the f ie ld ,  we 

Consider an electr ical ly  conducting f lu id  which has a conductivity Q and 
executes motions described by the velocity v. 
i s  - E + pe l  x E, thus 

The electr ic  f i e ld  it w i l l  eqer ience - 

J = a(E + p v x H) e- - - (4) 

The equations (1) - (4) incorporate the effect  of f lu id  motions on the electro- 
magnetic f ie ld .  
pondermotive which the f l u i d  elanents experience by virtue of the i r  carrying 

currents across m e t i c  l ines  of force. 

The inverse effect  of the f i e ld  on the motions resul ts  f ran the 

This is the Lorentz force given by 

Including t h i s  force among other forces acting on the fluid,  we have the 
equation of motion 

dv - 
- d i v P + p X + ' J x H  e- - p d t -  - 

where p is  the density, P is the total  s t ress  tensor and X represents the external 

forces of non-electranagnetic origin. 
- 

3 



I n  tensor aotation, th i s  equation can  be written 

where expl ic i t ly  

and where p i s  the isotropic pressure, p is  the coefficient of viscosity, and e 
the rate of deformation given by 

is 13 

For an inccmpressible f lu id  i n  which p is  constant and the forces X derive fraa - 
a potential - Q, the equation of motion (7) simplifies t o  

where v = p/p denotes the kinematic viscosity. 

In the general case, the equation of motion (7) has t o  be supplimented with 
the e q a t i o n  of continuity 

and the heat equation. 
study that our variables do not depend of temperature. 

We shall not write down the heat equation assuming i n  t h i s  

2. The Equation of Motion for  the Magn e t i c  Field 

W e  shall now obtain an equation of motion for  the magnetic f ie ld .  I n  View of 
further developnents, it is convenient t o  introduce here the vector potential A and 

the electrostat ic  potential #, writing i n  the usual way 
- 

4 



H = curl  & 

div A = 0 

- 

aA - 
E = - at - grad - 

We then obtain according t o  equation (4) 

- J = u[- - grad @ + p s x  curl  - A 1 aA 

Substitution into equation (1) gives 

aA - 
= v x curl  A - grad @ - ve curl curl A a t -  - - 

where ve = ( 4 ~ q . t ~ ~ )  -1 w i l l  be designated as the magnetic viscosity (see Elsasser, (13) 
2 -1 It may be noted that ve l ike v i s  of dimensions cm sec page 21). 

Taking the cur l  of terms of equation (16) and assuming ve a constant, we obtain 
( in  Cartesian coordinates) 

aH 
dt 
- 

= curl(v - -  x H) + vefg 

~ h i c l ?  is the  equation of motion governing magnetic f le ld .  
it i s  not res t r ic ted ei ther  t o  incaupressible f luids  or t o  inviscid fluids.  

Equation (17) is general; 

The case when the e lec t r ica l  conductivity of the medium may be considered as 
i n f in i t e  is  a particular interest i n  cosmic electrodynamics. 
i s  then zero, and equations (16) and (17) reduce respectively t o  

The magnetic viscosity 

bA 
a t -  - 
- 

= v x cur l  A - grad $ 

bH 
at = curl(v x H) - -  

5 
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Equations (18) and (19), especially the latter, have been the obJect of 
considerable research i n  the l i terature.  We may notice at once its f'ull analogy with 
the Helmholtz equation for the vorticity. This immediately permits t o  apply mutatis 
mutanaie the classical  and elegant results of' the theory of vort ic i ty  t o  the m e t i c  
field. I n  particular, it follows that the l ines  of force move with the fluid. For 
further de ta i l s  of th i s  analogy we refer t o  Goldstein's Lectures on Fluid Mechanics, (14) 

page 76. 

3. The Elsasser-Carstoiu Theorem 

Equation (19) may be put i n  a form which is reminiscent of the Cauchy-Stokes 
decanposition of an arbitrary instantaneous continuous motion of a fluid (see for 
instance Truesdell, (23) page 65). Equivalent t o  the basic equation (19) is 

d E";] 5 
dtp = P a x j  

where the equation of continuity (11) has been used. Equation (20) can be rewritten 

where, besides the 

r 
rate of deformation e the vorticity 4) - = Uij' ' 

appear under i ts  tensor ccunponents. We can write 

or i n  vector notation 

[E] = a, x - H 1  + - Gr% C 
i dt  P - P 2P 

where we set 

6 



H H  = ei j  i j 

and the gradient i s  taken with respect t o  Hi. 

Equation (24) shows that the rate of change of the magn e t i c  f i e ld  nay be 
conceived as made up of two past s. 
with the f lu id  particle; the second part shows that the terminus of H is moving in 
the direction of the normal of the quadric of the system; 

The first part expresses a rotation of the f i e l d  

- 

e x x = const. 
13 i 3 

on which its terminus lies, 

In this form the theorem has been stated by the miter!') kr fntegral fonnu- 
l a t ion  closely related t o  t h i s  has been ear l ie r  eiven by Elsasser. (11,121 

4. The Analogue of the CLebeah Thinsforpattion 

A m a t t e r  of interest  in cosmic electrodynamlos is the  analogue of tb Clebsch 
transfonaation of the bydrodymmical equations ( m a  page 248) . Fating 

one has 

- H = curl(# grad J I )  = grad # x grad $ 

The representation (28) is identiaalt t.a that given by Sweet (21) (see also 

(28) 

m e y $ l o )  page 31) w i t h  the exception of a factor F, Function of 
which appears on the right side of (28) An Sweet's representation. 
be shown that  Sweet's and our representation are equivalent (ree Ianib, loc. c l t . ) .  

and $ only, 

IjOvever, It can 

The immediate consequences of f o m o  (28) namely 

- H grad # = - H grad JI = 0 (29) 

show that the magnetic f i e l d  is tangent t o  the surfaces - const. and - const., 
which we shall c a l l  surfaces of force, and which correspond t o  vortex surfaces i n  
hydrodynamics. It is evident that their intersections are the l ines  of force. 

7 



5 .  Hamiltonian Form fo r  the Equation of Motion for the Magne t i c  Field 

Let  us now cane back t o  equation (18) and substi tute  thereto the value of A - 
given by (27). We have 

which can be written 

where 

Scalar multiplication of terms of equation (31) by grad # x grad $ gives 

that is the Jacobian 

This shows that # is  of the fonc%(@,Jr,t) Heme 

Canparison of equations (31) and (35) gives at once the Hamiltonian system 

Equations (36) are  analogous t o  Stuart's equations i n  hydrodynamics (see Irunb, 
loc. c i t . )  and were derived by this writer i n  a recent paper. (6) 

8 
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CHAPTER 11 

MAGNETOHYDRODYNAMIC WAVES IN A CONS!l?AN!C AND UNIFOIRM MAGNETIC FIELD 

The Case of an Incanpressible Fluid 

We begin with a discussion due t o  Walen (24) (see a l so  cowling (7'8)). Consider 
an i n f in i t e  mass of uniform fluid, at  rest ,  embedded i n  a constant and uniform 
magnetic f i e l d  3. 
perfectly conducting material (a+oo). 

a velocity f i e l d  - v is produced in a certain region, and that the msgnetic f ield 

We assme this fluid t o  be an inviscid, incanpressible and 
Suppose that as a result of a perturbation, 

becanes I& + h. - The equations giving the variations i n  v and h are 

% aV - 
at = - grad p + p& + 6 curl  h - x (3 + &) 

cur l  v x (% + h) 1 E =  [- - 
ah - 

where we have included 

= - grad Q 

po i s  the uniform dens 

4 

the gravitational potential 

t y  of our fluid,  and the term (v . v )  - v has been anitted. - 
Now, since - constant and 

d i v v = o  - (4) 

div h - = 0 (S 1 

equations (1) and (2) simplify t o  

by neglecting squares and products of the small quantities &,I. 
of equation (6); we have 

Take the divergence 

9 



In Cartesian coordinates equation (8) becanes 

since 

has no singularities and is bounded, 

P A  4 
p + 7 + poS2 = constant 

Hence, equation (6) becaues 

For simplicity take OZ parallel to %. Then equations (U) and (7) becaae 

Hence, by cross differentiation 

a2v a2v - 2 -  - 
at 2 = A o s  

a2h a2h - 2 -  - =  
at2 Ao ae2 

10 
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0 
i s  the Alfven's phase velocity, named so i n  honor of its discoverer. 
disturbance can be expressed as the resultant of two sets of waves traveling with 
velocities tAo i n  the z-direction, i.e., along the l ines  of fource of the undisturbed 
f ie ld .  

Thus the 

These waves are  called magnetohydrodynamic (m.h.) waves. 

After the two naves have separated we have i n  either of the waves 

the sign depending on the direction 
of equations (13) and (17) gives 

(17) 

of propagation of the wave considered. Canparison 

Before going farther, we note, 

(18) 

that' i n  considering the propagation described by 
Alfv&, the velocity - v and the magnetic f ie ld  h - can be replaced by 
and the current density J = (1/4n)curl h - respectively; fo r  one has 
fo r  these quantities, namely 

together with the relation 

the vort ic i ty  u) 
similar equations 

- 

7. Canpressible Fluid - Vorticity and Current Density Propagation 

In  taking t h i s  point of view as a point of departure, we shall show that in - the 
case of a canpressible medium the ccmponents of 5 and J i n  the direction of the field 

11 
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/ 
only are p romated  i n  Alfven's manner. Thus, surprisingly enough, the canpreasiblllty 
of a medium acts  as a wave f i l t e r  discriminating between cmponents of vort ic i ty  and 
current density and passing only those directed along the (undisturbed) magnetic f ie ld .  
The proof goes like this. 

linearized system replacing equations (6) and (7) is 
When the cmpressibil i ty is taken into account, the 

ah aV 

where we s e t  

Equations (4) and (5) a re  replaced by 

a 6 + po div - v = 0 

div h = 0 

where p is  the 

- 

2 
P - EoP 

where a. is 

=ng 

perturbation in density. We shall assume 

the ordinary sound speed in the absence of a 

the cur l  of terns of equations (22) and (23) 

.. 

+ 1I, x grad div v 4x dt = 2Ho az - 

which imply important consequences, as wi l l  be shown. 

that 

magnetic f ie ld .  

we obtain 
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(a) Propagation of z-Canponents of Vorticity and Current Denslty 

Equations (28) and (29) when projected on the Oz axis give 

acu aJz z 
2n at = Ho dz 

Hence 

2 b 3, 2 a2jz 
= A. 3 - 

at2 

and 

HO =+-a Jz -2d0 z 

(32) 

(33) 

(34) 

Thus, the canponents of u) - and j, along the l ines  of force (longitudinal canponente) 
a re  propagated i n  the opposite directions of the undisturbed field with velocities 

?Ao* 

The coupling relationship (37) between longitudinal. canponents shows that 
( i )  it does not depend on the magnitude of the magnetic f ield present; ( i i )  the 
vanishing of either canponent involves the vanishing of the other; t h i s  occurs 

when ei ther  quantity is zero ini t ia l ly .  

(b) Equations for  the Transverse Cauponents 

It may be noted that although cuz and j, are  propegated one-dimensionally, aloag 

the magnetic l ines  of force, no other canponent of vort ic i ty  and current density is; 
the x- and y-canponents of vorticityand current density satisFy 

13 
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and 

showing that only for  incanpressible flow do they satisfy the same equations as az 
and j,; i n  a canpressible flow their oscillations are  coupled t o  those of density. 

8. Wave-Motion Equations for  the Density and Transverse Canponents 

Differentiation with respect t o  t of equation ( 2 5 )  gives 

a 3 -  2 2  
2 - aoVP + - at H v z  0 (39) 

where the equations (22) and (27) have been used, and the gravitational potential 
has been mi t ted .  Now 

Hence, the density sa t i s f ies  

To obtain an equation for  p alone, we eliminate jx and j between equations (371, 
(38), and (41). 

Y 
The result is 

14 
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where a two-dimensional Iaplacian amears. 

2 - A. 
This equation shows 

(42) 

plainly the radical 

departure of the "new sound-wave equation" fran the ordinary sound equation in the 
absence of a magnetic field. 

We may ask now i f  it were possible t o  satisfy both equations (42) and 

Then, by virtue of the former, we must have 

and hence equation (43) reduces t o  

which admits a solution of the form 

provided tha t  

2 2 0  
a 

Y = y  
0 

(43) 

(45) 

(47) 

We can now easily veri* that (46)  i s  effectively a particular solution of 
equation (42) under condition (47). 
f l u id  penetrated by a uniform magnetic f ie ld ,  with t h i s  great difference that they 

do not spread out three-dimensionally as i n  ordinary acoustics; instead, they p r w a t e  
(without attenuation) one-dimensionally, along the magnetic l ines  of force. It is also 

interesting t o  note that i n  contrast t o  m.h. waves, t h i s  propagation does not depend on 

the magnitude of the magnetic f i e l d  present. 

Thus sound waves appear possible i n  a conductin$ 

15 



Equatipn (42) can be rewritten as follows 

Differentiation with respect t o  t of terms of equation (48) yields an equation 
for  the expansion A = div v. given by Lighthill - 

Let us cane back t o  equations (35) - (38) and improve our results. Elimination 
of p between equations (35) and (48) and then between (36 )  and (48) gives 

Similarly, elimination of p between equations (37), (38) and (48) gives 

Equations (49) and (50) show that the quantities 

a re  propagated along magnetic l i nes  of force a t  Alfvgn velocity Ao. 

are identical  zero if they were zero Ini t ia l ly;  under th i s  condition, equations (49) 
and (50) reduce t o  fourth-order equations of the same type as equation (48). 

These quantities 

16 
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CHAPTER I11 

THE GEOMETRY OF DIpo3;E: MAGNETIC LINES OF FORCE 

9 .  Pre lh ina r i e s  

The equations of motion i n  the case of a constant magnetic dipole are cmplicated 

and require sane detailed discussion of the geanetry of the magnetic l ines  of force. 
St”oer (22) was the first t o  use i n  his equations the  arc  s of a l i n e  of force, instead 

of the time (see h i s  book, page 215). 
the t ra jector ies  i n  the equatorial plane of the dipole (loc. c i t . ,  page 221). 

other authors used a t  least the element of length of magnetic l ines  of force i n  various 
of t he i r  calculations. 
gemetry of these l ines .  

account of the gemetry of magnetic l ines of force for  the case under consideration. 

10. Equations of Lines of Force and Linear Element 

He a l s o  calculated the radius of curvature of 
Also, 

However, nowhere do we f ind a detailed discussion of the  

I n  t h i s  Chapter, we propose t o  f u l f i l l  t h i s  need by e, systematic 

As well known, a dipole magnetic f i e l d  has components 

where M i s  the magnetic mment of 

2 2 

5 
r - 32 

r 
Hz = -M 

2 2  ,he dipole, r = x + y2 + z2, and the sign i s  

chosen such that Hz is  positive i n  the x,y plane, which i s  the equatorial plane of 
the dipole; t h i s  requires tha t  the dipole has i t s  negative pole directed upward. 

The d i f fe ren t ia l  equations of lines of force a re  

The first two equations give a t  once 

y = cx (3) 

where C i s  a constant. 
axis. 

Equation (3) represents a family of planes passing through 02 
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Then, by virtue of (3 ) ,  the last two equations give 

dz 2z2 - A2x2 
ax 3x2 
- =  

A 2 = l . + C  2 

This is a hmogeneous equation of the f irst  order. On substi tution of 

z = x u  

the  equation becanes 

i n  which the variables a re  separated; the solution is  

2 - -  
X 3 = B ( u  2 2  + A )  

B being a constant of integration. Hence 

- 
2 2 2  x 3 = B ( x  + y  + z )  (9) 

t ha t  is 

2 - 
x3 = ar 

where a =./B 
We now introduce the polar coordinates 

x = r cos @ cos x 
y = r s i n  @ cos x 
z = r s i n  A 

(11) I 
where X designates the magnetic lati tude.  
becomes 

I n  these coordinates, equation (10) 

k l  
18 



cos2 @ cos2 A = a 3 r 

TO elimimte pl, we write 

x = ~ = t a n p l  
X 

Hence 

1 cos2 pl = 
$ + l  

and equation (12) becomes 

r = r 0 cos2 x (15) 

where we put ro = 1/ I 3 ( C 2  + l)] . Equation (13) i s  the equation of l ines of force 
i n  each meridian plane; it is  obvious that ro i s  the value of r f o r  h = 0 ( i n  
equatorial plane). 

I n  Cartesian coordinates, we have the following parametric equations of the 

l i nes  of force 

* 
r cos A 

X' 

G T l  

G G  
C r  cos A 

Y "  

z = r s i n  A 

To calculate the l inear  element of these l i nes  we may use ei ther  equation (15) and 

then 

2 2 2  as2 = + r dX 

or the parametric equations (16) and then we have 

2 2 2 ds2 = dx + dy + dz 

Ths result i s  



1 
2 z  ds = rdX(1 + 4 tan X) 

11. The Frenet Formulas fo r  a Line of Force 

The tangent t o  a l i ne  of force is defined by 

F-1007-1 

W e  next calculate the quantities a / d s ,  m/ds, dy/ds. One has fo r  instance, 

- = - -  a a d X ,  e tc .  
d.s dX ds 

After sane calculation, we obtain 

ag -3c cos X 1 - 4 tan2 X 
ds 
- l =  v G  r ( l  + 4 tan2 x ) ~  

2 - -  dy - -9 - s i n  X ( l  + 2 tan 
ds 

X) 
r ( l +  4 tan2 x ) ~  

The radius of curvature p is  given by 

1 
2 

P 
- =  

- - (22 1 
20 
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In the equatorial plane 

r 

3 3  
0 l,. 

p = - = -  (23) 

As a verification of result (22), we may use the formula 

3 
2 2)F (r + r' 

2 P =  
r2 + 2r1 - rrll 

One has 

r =i r cos2 x 
0 

r' = -2r cos A sin X 
0 

r" = -2ro(cos 2 x - sin 2 X) 

Hence 

- 3 ri(cos4 x + 4 cos2 x sin2 
cos2 x cos h + 8 sin 2 x 7 2(c0s2 x - sin2 XI 

2 

L 2  
P =  

3(1 + 2 tan2 x j  

which checks ow earlier result (22). 

The principal normal, which in our case reduces to the normal of lines of 
is determined by 

2 m cos X 1 - 2 tan X 
a l = p - = -  ds c 4  + 4 tan2 h 

2 as C cos X 1 - 2 tan X 

2 % = p - = -  ds q r  
c + l q l +  4 tan x 

- dY 3 sin 
y l - p - = -  ds 4 + 4 tan2 

21 
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The binormal of l ines  of force is, of course, the uni t  normal t o  the planes 
y = Cx; therefore, i t s  direction causes a re  

Therefore, direct  application of the Frenet formulas has t o  give the above resu l t s .  

This w i l l  verify our previous results.  One has 

- C 1 2 
a2 = By1 - 7Bl - q G  1 + 4 tan2 x 

Also 

Y2 = cx8, - Wl = 0 

which values agree with those given by (28). 

t 
1 
I 
I 
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12. Preliminaries 

D~ngey '~ )  i n  h i s  remarkable report of 1954 has discussed i n  some de ta i l  the 

electrodynamic behavior of the Outer Atmosphere i n  the presence of a constant dipole 
magnetic f ie ld .  

however, concentrating our attention, as we did i n  Chapter 11, on the vort ic i ty  f i e l d  
and the current density. 

We shall here approach the problem from a different point of view, 

Consider an inf in i te  mass of an electr ical ly  conducting f lu id  a t  rest embedded 
i n  a constant dipole magnetic f i e l d  H. 

ductivity as inf in i te  and assume the f lu id  t o  be a hanogeneous incompressible 
material. Assume that as a resul t  of a perturbation, a velocity v is  produced i n  a 

cer ta in  region and that  the magnetic f i e ld  becanes H + h. The amplitude i s  assumed 
t o  be s m a l l  enough fo r  non-linear terns t o  be neglected. We propose t o  investigate 
the magnetohydrodynamic behavior of t h e  f l u id  i n  terms of generalized Alfven waves. 

13. Fundamental Equations 

To simplify the discussion, take the  con- - 

- 
- -  

The relevant equations for  the problem are  

div v = 0 - 
div h = 0 - 

the condition a@t = O(constant dipole) has been used i n  equation (2) .  

cu r l  - H = 0, equation (1) can be rewritten as follows 

Since 

(3)  

(4) 

23 
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Taking the cur l  of terms of equations ( 5 )  and (2) we obtain 

We have 

8H - aH 
cur l  (H V)h + (h V ) H  = 4x(E v)J + grad hx x e + grad h Y X 6  

aa ah - ah 
+ grad hZ x e + grad H X x ax + grad H Y Y  x f 

1 - - [- - 

ah 
+ grad Hz x e 

After sane calculation, we obtain 

where the condition curl - H = 0 has been used. 

Hence equation (6) can be written 

O n  the other hand, 

grad H Y 

a H  - 
+ grad Hz x - grad v x ax - 1  

a H  - 
Y X F  

+ grad v x 
Z 

+ grad v 

. 
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In  t h i s  case, there is, however, no simple way t o  write vectorially equation (7) 
i n  a compact form; we have for  components the following equations 

where e 

been used. 

i s  the ra te  of deformation and where again t h i s  condition cu r l  H = 0 has i j  - 

14. Propagation a t  Large Distances 

These equations a re  rather cmplicated. We may simplify them by observing tha t  
-4 the derivatives of the canponents o f t h e  dipole magnetic f ie ld  are the order of r 

while these canponents themselves are of the order r-3. 

large, we may neglect the term (J, - 
a l l  terms such as (bHxpy)e 
large, equations (10) and (12) reduce t o  

Therefore fo r  r suff ic ient ly  

)E i n  equation (10) and similarly we may neglect 
e tc . ,  i n  equation (12). Hence, for r suff ic ient ly  31’ 

and 

In the second place, we have a long a l i ne  of force 

where H i s  themagnitudeof the dipole magnetic f i e l d  and ds the element of length 

of l i n e  of force. 
written 

Hence along a l ine of force, equations (13) and (14) can be 

25 
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that is 

Observing that aH/at = 0 (constant dipole), we obtain by cross-differentiation 

cos2 x(l + 4 tail2 x) 
6 r 

:I 
;'S 
II 

2 1 + 4 t a n 2 x  
r6 cosl0 A 

= Y  
0 

where we put 

26 
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We achieve the reduction of these equations by taking instead of s the magnetic 

la t i tude X as independent variable. We have 

and 

2 

ds 
- -  d h -  

2 

Now (see Chapter 111, equation (9)) 

dh - 1 - -  
ds 1 - 

r cos2 .~(1+ 4 tan2 kl2 
0 

therefore, we have 

d 2 X  - 2 tan h(2 tan2 X - 1) 

ds2 
- -  

r2 cos4 X ( l  + 4 tan2 A)* 
0 

(27) 

On the other hand 

dA2 dA2 dX 
ds dh ds 

- = - -  

and 

L J  

A 

Substitution of these values i n  equation (20) gives 



1 acu 2 a2a - 5  - Y 2 1 + 4 t a n 2 X p  - 1 - 2 tan ~ ( 2  t an  x - 1) 
+ r2  h ( l +  4 tan2 1,)‘ ro cos4 ~ ( 1 +  4 tan2 X) 

0 
r6 cos lo x 
0 

at2 

* 2 3 tan h(3 + 8 tan2 X) 

r8 + a x 7  ~ ( 1  + 4 tan2 X) 
0 

that is  

+ 7 tm X :] 2 
a2g - 5 .  Y 
at2 rf A 

and a similar equation fo r  a. Supposing that 

we get  

2 dcu 

d X2 
+ 7 tan X - d”l + f3 2 a  ro cos 14 X * $ = o  

- - 
dX (33) 

where B2 = d2/y2. 

15. Integral  Equations fo r  Vorticity and Current Density 

Equation (33) can be transformed i n  an integral  equation similar t o  that given 

by Dungey (see Reference 9, page 33). In order t o  do t h i s  we use the ident i ty  

Hence equation (33) can be written 

or, by putting - Sl = sec3 X , 

28 
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I 
8 

Assuming that for  h = 0, d q d h  = 0, i .e. ,  %/dX = 0, we obtain the following 

i n t e g r d  equation 

which, curiously enough, has the same form as the equation given by Dungey (loc . c i t . ,  
page 33) but i s  of vectorial  character of and includes an additional term 
3 ( l  + 5 tan 
differ ra t ica l ly  frm those used by Dungey. 

2 X)sec A; the variables and assumptions used t o  arr ive a t  t h i s  result 

The quantity - J ( h )  = Jl(X)sec3 X verifies, of course, the same equation (37). 
Equation (37) may be integrated by successive approximations. 
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